截图
简介
这是多级离心泵的检修ppt,包括了概述,离心泵的工作原理、分类、型号及结构,屏蔽式离心泵的特点,离心泵的主要零部件等内容,欢迎点击下载。
多级离心泵的检修ppt是由红软PPT免费下载网推荐的一款课件PPT类型的PowerPoint.
一、概述 1、泵是输送液体并提高液体压力的机器(一种“增能”机 器)。 2、泵分为化工用泵、水泵。 3、主要差异:特殊材料和设计,防止腐蚀和适应化工工艺, 包括结构、轴封、材料及检修难度。 4、化工用泵的要求 (1)、适应化工工艺要求运行可靠。 (2)、耐腐蚀,耐磨损。 (3)、满足无泄漏要求。 (4)、耐高温或耐低温并能有效连续工作。 二、离心泵的工作原理、 分类、型号及结构 (一)、离心泵的装置及工作原理 1、为了使离心泵能正常工作,离心泵必须配备一定的管路和管件,这种配备有一定管路系统的离心泵称为离心泵装置。图1—1所示为离心泵的一般装置示意图,主要有底阀、吸入管路、排出阀、排出管线等。复查联轴器找正对中 2、离心泵的工作原理 离心泵在启动之前,依靠高速旋转的叶轮,液体在惯性离心力作用下获得了能量以提高了压强。水泵在工作前,泵体和进水管必须罐满水,防止气蚀现象发生。当叶轮快速转动时,叶片促使水很快旋转,旋转着的水在离心力的作用下从叶轮中飞去,泵内的水被抛出后,叶轮的中心部分形成真空区域。一面不断地吸入液体,一面又不断地给予吸入的液体一定的能量,将液体排出。离心泵便如此连续不断地工作。 (二)、离心泵的气蚀 1、所谓的气蚀是指:离心泵启动时,若泵内存在空气,由于空气的密度很低,旋转后产生的离心力很小,因而叶轮中心区所形成的低压不足以将液位低于泵进口的液体吸入泵内,不能输送流体的现象。 2、 离心泵启动前一定要向泵壳内充满水以后,方可启动,否则将造成泵体发热,震动,出水量减少,对水泵造成损坏(简称“气蚀”)造成设备事故! (三)、离心泵的分类 离心泵的种类很多,分类方法常见的有以下几种方式 1、按叶轮吸入方式分:(1)单吸式离心泵;如图1-2所示 (2)双吸式离心泵;如图1-3所示, (3)单级双吸离心泵 扬程范围为10—140m,流量范围是90—28600m3/h。按轴的安装位置不同,分卧式和立式两种结构。图12—3为卧式S型单级双吸离心泵结构。这种泵实际上相当于两个B型泵叶轮组合而成,液体从叶轮左、右两侧进入叶轮,流量大。转子为两端支承,泵壳为水平副分的蜗壳形。两个呈半螺旋形的吸液室与泵壳一起为中开式结构,共用一根吸液管, 吸、排液管均布在下半个泵壳的两侧,检查泵时,不必拆动与泵相连接的管路。由于泵壳和吸液室均为蜗壳形,为了在灌泵时能将泵内气体排出,在泵壳和吸液室的最高点处分别开有螺孔,灌泵完毕用螺栓封住。泵的轴封装置多采用填料密封,填料函中设置水封圈,用细管将压液室内的液体引入其中以冷却并润滑填料。轴向力自身平衡,不必设置轴向力平衡装置。在相同流量下双吸泵比单吸泵的抗汽蚀性能要好。 2按叶轮数目分: (1)单级离心泵 泵中只有一个叶轮,单级离心泵是一种应用广泛的泵。由于液体在泵内只有一次增能,所以扬程较低。如图1—2所示为单级单吸离心泵。 (2)多级离心泵 具有两个或两个以上叶轮的离心泵称为多级离心泵。级数越多压力越高。图1—4所示为一台分段式离心水泵,这种泵的叶轮一般为单吸式。 多级离心泵 结构图 3、 按离心泵扬程分: 4、按泵的用途和输送液体性质分类: (四)、离心泵型号及结构 1、离心泵的型号 2、离心泵的结构 离心泵的品种很多,各种类型泵的结构虽然不同,但主要零部件基本相同。 主要零部件有泵壳、泵盖、泵体、叶轮、密封环、泵轴、机封或填料函、联轴器、轴承等。 (1)、单级单吸离心泵如图1-5所示 单级单吸离心泵的特点 B型泵此泵用于输送温度不超过80℃的清水及与水相近的清洁液体,扬程范围为8—125m,流量范围为4.5—362m3/h。B型泵结构简单,工作可靠,易于加工制和维护保养,是在IS型泵之前应用最广泛的一种离心泵。 B型泵有前开门式和后开门式两种。前开门式为叶轮前面为泵盖,后面为泵壳;而后开门式与前开门式相反,叶轮前面为泵壳,后面为泵盖。 图1—5所示为B型泵的前开门式结构,泵的进口在泵盖上,出口在泵壳上,泵壳是螺旋形蜗壳,泵轴的一端支承在泵体内的轴承上,另一端伸出称为悬臂端,叶轮装在悬臂端。叶轮上开有平衡孔,用来平衡部分轴向力,未平衡的轴向力由轴承承受。轴承用润滑脂润滑,多为球轴承。轴封装置采用填料密封,泵内的压力水可直接由开在泵壳上的孔送到水封环,起水封作用。 (2) IS型泵仍是单级单吸 悬臂式离心泵 图l—6所示为IS型泵的结构 IS型泵仍是单级单吸悬臂式离心泵 特点 但它是按国际标准规定的性能和尺寸设计的,是一种节能新产品,目前已替代B型泵。IS型泵用于输送清水和性质与水相似的液体,温度不超过80℃,流量范围为6.3—400m3/h,扬程范围为5—125m,转速为2900r/min或1450r/min。 图l—6所示为IS型泵的结构。它为后开门结构,主要由泵壳、泵盖、叶轮、轴、密封环、轴套及泵体等组成。泵通过加长弹性联轴器与电动机相连接,自进口方向看叶轮逆时针旋转。与B型泵比较,IS型泵的效率和吸程有较大提高,噪声低、振动小。拆下加长联轴器的中间连接件,即可取下泵的转子,故检修方便。 (3)、单级双吸式离心泵 如图1-3所示 图1—3为卧式S型单级双吸离心泵结构。这种泵实际上相当于两个B型泵叶轮组合而成,液体从叶轮左、右两侧进入叶轮,流量大。转子为两端支承,泵壳为水平剖分的蜗壳形。两个呈半螺旋形的吸液室与泵壳一起为中开式结构,共用一根吸液管,吸、排液管均布在下半个泵壳的两侧,检查泵时,不必拆动与泵相连接的管路。由于泵壳和吸液室均为蜗壳形,为了在灌泵时能将泵内气体排出,在泵壳和吸液室的最高点处分别开有螺孔,灌泵完毕用螺栓封住。泵的轴封装置多采用填料密封,填料函中设置水封圈,用细管将压液室内的液体引入其中以冷却并润滑填料。轴向力自身平衡,不必设置轴向力平衡装置。在相同流量下双吸泵比单吸泵的抗汽蚀性能要好。 (4)、多级离心泵 如图1-4所示; 人们把若干个叶轮安装在同一个泵轴上,每个叶轮与其外周的液体导流装置形成一个独立的工作室,这个工作室与叶轮组成的系统可以认为是一个单级离心泵,每个工作室前后串联,就构成了多级泵。与多个单级离心泵串联相比,多级泵具有效率高、占地面积小、操作费用低、便于维修等优点。该泵流量范围为5—720m3/h,扬程最高达2800m。 多级离心泵除了具有单级离心泵的优点之外,它最大的优点就是扬程高。多级离心泵的用途十分广泛,例如,化肥生产中,用多级泵将氨水打入碳化塔,由氨水吸收加压氮氢混合气中的二氧化碳,生产出碳酸氢铵;锅炉的给水;山区的深井提灌等。 (5)、屏蔽式离心泵 如图1-7所示 屏蔽式离心泵的特点 化工厂常用的屏蔽泵,属于单级悬臂式离心泵,其结构图如图1-7所示; 屏蔽泵又称无填料泵,这种泵用于输送易燃、易爆、有毒、有放射性及贵重液体,也可选作高压设备的循环用泵。其结构特点使泵的叶轮与电机的转子在同一根轴上,装在同一格密封的壳体内,没有联轴器和封装置,从根本上消除了液体外漏。为了防止输送液体昱电气部分接触,电机的定子和转子分别用金属薄壁圆筒(屏蔽套)于液体隔离。屏蔽套的材料应能耐腐蚀,并具有非磁性和高电阻率,以减少电动机因屏蔽套存在而产生额外功率消耗。为了不干扰电机的磁场,这种金属薄臂圆筒采用奥氏体系非磁性材料(1Gr18Ni9Ti)制成。由于有屏蔽套,增加了电机转子和定子的间隙,使电机效率下降,因此,要求屏蔽套的壁要很薄,一般为0.3—0.8mm. 屏蔽泵具有结构简单紧凑,零件少,占地少,操作可靠,长期不要检修等优点。缺点是效率低,比一般离心泵低26%—50%。 (6).高速离心泵 如图1—8所示 高速离心泵的特点 如图1—8所示,高速离心泵由电机,增速器和泵三部分组成。泵和增速器一般为封闭结构。可以露天安装使用。立式结构使用广泛,驱动功率一般为7.5-132kW。当驱动功率超过160kW时,采用卧式结构。 高速离心泵叶轮和泵体之间没有密封环,泵内部的间隙较大。叶轮叶片与泵体后盖板和扩散锥管之间的间隙一般为2—3mm,如果达3—4mm还可应用,而不影响效率。泵的轴封装置通常采用机械密封。泵内设有旋风分离器,使泵抽送的液体得以净化,引向机械密封以延长机械密封的寿命。 高速离心泵的高速是通过增速器实现的,所以增速器是高速离心泵的关键部件之一。增速器主要由齿轮构成,有一级增速和两级增速两种基本类型。增速器齿轮一般采用模数较小的渐开线直齿轮,这样可避免产生轴向力,而且制造方便。增速器壳体分成两半,一般靠定位销定位。增速器外壳用散热性能好的铝合金制造。 高速轴上的轴承对小功率泵采用巴氏合金轴承,功率在150kW以上用分块式滑动轴承与端面止推轴承组合。增速器的润滑是由自带油泵把油经滤油器和油冷器送人壳体各个喷嘴,通过喷嘴将油喷成雾状,用油雾来润滑齿轮和轴承。这种泵适用在高扬程,小流量的场合。由于叶轮与壳体的间隙较大,所以可用来输送含固体微粒及高教度的液体。带诱导轮的叶轮具有良好的抗汽蚀性能。 高速泵结构紧凑、体积小、质量轻、占地面积少。缺点是加工精度要求高,制造上比较困难。 三、离心泵的主要零部件 (一)、离心泵转子 1.叶轮 叶轮 结构图 2.泵轴 离心泵的泵轴的主要作用是传递动力,支承叶轮保持在工作位置正常运转。它一端通过联轴器与电动机轴相连,另一端支承着叶轮作旋转运动,轴上装有轴承、轴向密封等零部件。 泵轴属阶梯轴类零件,一般情况下为一整体。但在防腐泵中,由于不锈钢的价格较高,有时采用组合件。接触介质的部分用不锈钢,安装轴承及联轴器的部分用优质碳素结构钢,不锈钢与碳钢之间可以采用承插连接或过盈配合连接。由于泵轴用于传递动力,且高速旋转,在输送清水等无腐蚀性介质的泵中,一般用45#钢制造,并且进行调质处理。在输送盐溶液等弱腐蚀性介质的泵中,泵轴材料用40Cr,且调质处理。在防腐蚀泵中,即输送酸、碱等强腐蚀性介质的泵中,泵轴材质一般为1Crl8Ni9或1Crl8Ni9Ti等不锈钢。 3.轴套 轴套的作用是保护泵轴,使填料与泵轴的摩擦转变为填料与轴套的摩擦, 4.轴承 (二)、蜗壳和导轮 蜗壳与导轮的作用,一是汇集叶轮出口处的液体,引入到下一级叶轮入口或泵的出口;二是将叶轮出口的高速液体的部分动能转变为静压能。一般单级和中开式多级泵常设置蜗壳,分段式多级泵则采用导轮。 1.蜗壳 蜗壳是指叶轮出口到下一级叶轮入口或到泵的出口管之间截面积逐渐增大的螺旋形流道,如图1—15所示。其流道逐渐扩大,出口为扩散管状。液体从叶轮流出后,其流速可以平缓地降低,使很大一部分动能转变为静压能。 2.导轮 (三)、密封环 (四)、轴向密封装置 从叶轮流出的高压液体,经过叶轮背面,沿着泵轴和泵壳的间隙流向泵外,称为外泄漏。在旋转的泵轴和静止的泵壳之间的密封装置称为轴封装置。它可以防止和减少外泄漏,提高泵的效率,同时还可以防止空气吸入泵内,保证泵的正常运行。特别在输送易燃、易爆和有毒液体时,轴封装置的密封可靠性是保证离心泵安全运行的重要条件。常用的轴封装置有填料密封和机械密封两种。 1.填料密封 填料密封指依靠填料和轴(轴套)的外圆表面接触来实现密封的装置。它由填料箱(又称填料函)、填料、液封环、填料压盖和双头螺栓等组成,如图1—19所示。液封环安装时必须对准填料函上的入液口,通过液封管与泵的出液管相通,引入压力液体形成液封,并冷却润滑填料。填料密封是通过填料压盖压紧填料,使填料发生变形,并和轴(或轴套)的外圆表面接触,防止液体外流和空气吸入泵内。填料密封的密封性可用调节填料压盖的松紧程度加以控制。填料压盖过紧,密封性好,但使轴和填料间的摩擦增大,加快了轴的磨损,增加了功率消耗,严重时造成发热、冒烟,甚至将填料烧毁。填料压盖过松,密封性差,泄漏量增加,这是不允许的。合理的松紧度应该使液体从填料函中滴状漏出,每分钟控制在15—20滴左右。对有毒、易燃、腐蚀及贵中叶体,由于要求泄漏量较小或不准泄漏,可以通过另一台泵将清水或其他无害液体打到液封环中进行密封,以保证有害液体不漏出泵外。也可采用机械密封装置。 低压离心泵输送温度小于40℃时,常用石墨填料或黄油渗透的棉织填料;输送温度小于250℃、压力小于1.8MPa的液体时,用石墨浸透的石棉填料;输送温度小于400℃、允许工作压力为2.5MPa的石油产品时,用金属箔包石棉芯子填料。 2.机械密封 填料密封的密封性能差,不适用于高温、高压、高转速、强腐蚀等恶劣的工作条件。机械密封装置具有密封性能好,尺寸紧凑,使用寿命长,功率消耗小等优点,近年来在化工生产中得到了广泛的使用。 (1)结构及工作原理依靠静环与动环的端面相互贴合,并作相对转动而构成的密封装置,称为机械密封,又称端面密封。其结构如图1—20所示。紧定螺钉1,将弹簧座2固定在轴上,弹簧座2、弹簧3、推环4、动环6和动环密封圈5均随轴转动,6静环7、静环密封圈8装在压盖上,并由防转销9固定,静止不动。动环、静环、动环密封圈和弹簧是机械密封的主要元件。而动环随轴转动并与静环紧密贴合是保证机械密封达到良好效果的关键。 (2)结构形式 ②非平衡型与平衡型 ③单端面与双端面机械密封 (3)机械密封零件材料 (4)冷却冲洗 (五)、轴向力平衡装置 1.轴向力及危害性 2.平衡装置 ③采用双吸叶轮双吸叶轮的外形和液体流动方向均为左右对称,所以理论上不会产生轴向力,但由于制造质量及叶轮两侧液体流动的差异,仍可能有较小的轴向力产生,由轴承承受。 ④采用平衡叶片如图l—28 (c)所示,在叶轮轮盘的背面装有若干径向叶片。当叶轮旋转时,它可以推动液体旋转,使叶轮背面靠叶轮中心部分的液体压力下降,下降的程度与叶片的尺寸及叶片与泵壳的间隙大小有关。此法的优点是除了可以减小轴向力以外,还可以减少轴封的负荷;对输送含固体颗粒的液体,则可以防止悬浮的固体颗粒进入轴封。但对易与空气混合而燃烧爆炸的液体,不宜采用此法。 (2)多级泵的平衡装置 ②平衡盘装置因分段式多级离心泵叶轮沿一个方向装在轴上,其总的轴向力很大,常在末级叶轮后面装平衡盘来平衡轴向力。平衡盘装置由装在轴上的平衡盘和固定在泵壳上的平衡环组成,如图1-30所示。 在平衡盘5与平衡环4之间有一轴向间隙b,在平衡盘5与平衡套3之间有一径向间隙b0,平衡盘5后面的平衡室与泵的吸人口用管子连通,这样径向间隙前的压力是末级叶轮背面的压力P2,平衡盘后的压力是接近吸入口的压力Pl。泵启动后由多级泵末级叶轮流出来的高压液体流过径向间隙b0,压力下降到P‵,由于压力P‵>Pl,就有压力P‵一Pl作用在平衡盘5上,这个力就是平衡力,方向与作用在叶轮上的轴向力相反。 离心泵工作时,当叶轮上的轴向力大于平衡盘5上的平衡力时,泵的转子就会向吸入方向窜动,使平衡盘5的轴向间隙b0减小,增加液体的流体阻力,因而减少了泄漏量。泄漏量减少后,液体流过径向间隙b0的压力降减小,从而提高了平衡盘5前面的压力p‵,即增加了平衡盘5上的平衡力。随着平衡盘5向左移动,平衡力逐渐增加,当平衡盘5移动到某一个位置时,平衡力与轴向力相等,达到平衡。 (六)、转子的不平衡 动不平衡如果在一个转子上,能够综合出两个大小相等、方向相反,但不在同一直径的不平衡重量,则转子在静止时虽然能获得平衡,—但在旋转时就会出现一个不平衡的力偶,这力偶不能在静力状态下确定,而只能在转子动态下确定,故称为动不平衡状态,如图1-31 b所示。 动不平衡状态一般常出现在长度与直径之比(L/D)较大的(即柱状的)转子上,如多级离心泵、高速泵、离心机、水环泵、电动机和离心式压缩机的转子等。 2.混合不平衡 混合不平衡如果在一个转子上,既有静不平衡:又有动不平衡,这就称为混合不平衡状态,如图1-31c所示。这种混合不平衡状态是最普遍的一种不平衡的状态,它多半产生在长度和直径较大的转子上。 为了消除转子上的不平衡力或不平衡力偶所引起的有害的影响,必须精确地测定出不平衡重量所在的方位和大小,然后设法用平衡重来平衡之。这种操作过程就称为转子找平衡,一般可以分为静平衡和动平衡两种方法。 通常凡是需要找动平衡的转于,最好都预先找好静平衡,然后再找动平衡。反之,凡是已经找好动平衡的转子,就不需要再找静平衡,因为动平衡的精度比静平衡来得高。 3、静平衡 4、静平衡的设备和操作方法 静平衡的设备和操作方法通常找静平衡是在平行导轨式的平衡架上进行的,如图: 12—33所示。平行导轨的断面有平刀形、棱柱形、梯形和圆形等四种,如图12—34所示。平刀形和梯形的导轨,形式非常简单;但是,由于顶部的宽度b不能变动,所以,必须备有顶部宽度各不相同的整套导轨,才能满足各种不园重量的转子找平衡的要求。棱柱形导轨有四个宽度各不相同的工作平面,可以平衡重量不同的转子;但是,它在垂直方向上的刚度较小,因此,只能用于重量较小(200公斤以下)的转子。圆形导轨没有平顶面,其优点是加工简单(外圆磨削),同时,只要把导轨转一个不大的角度,就可以把损坏的地方移出接触区它用于重量不超过40—50公斤的转子 平行导轨的工作长度,在任何情况下都不能少于与轴颈或心轴周长的两倍,以便在找平衡时可以让转子在导轨上滚动两圈。平行导轨两工作表面(刀口)应严格的水平和相互平行,其水平度和不平行度误差不得大于0.02毫米/米。找平衡前,应预先调整好。平行导轨还应该有足够的刚度,以免在进行转子平衡时产生弯曲而影响平衡的精确度。
展开