函数单调性ppt说课稿

简介 相关

截图

函数单调性ppt说课稿

简介

这是函数单调性ppt说课稿,包括了教材分析,教学重点和难点,学情分析,教学方法,教学过程的设计,归纳探索,形成概念,归纳小结,提高认识等内容,欢迎点击下载。

函数单调性ppt说课稿是由红软PPT免费下载网推荐的一款课件PPT类型的PowerPoint.

一、教材分析 1、教材的地位和作用 函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用如下 (1)函数的单调性起着承前启后的作用。一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;另一方面函数的单调性一节中的知识和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。 一、教材分析 一、教材分析 (3)函数的单调性有着广泛的实际应用。在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个数学教学。 因此“函数的单调性”在中学数学内容里占有十分重要的地位。它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。 二、教学重点和难点 根据教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性. 二、 教学目标 根据函数单调性在整个教材内容中的地位与作用,本节课教学应实现如下教学目标 【知识目标】使学生从形与数两方面理解函数单调性的概念,学会利用函数图像理解和研究函数的性质,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. 【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力. 二、 教学目标 【德育目标】通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程. 三、学情分析 从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。 三、学情分析 从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括的能力和语言转换能力。 三、学情分析 从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描述函数性质是学生关注的问题,也是学习的重点问题。函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生也容易产生共鸣,通过对比产生顿悟,渴望获得这种学习的积极心向是学生学好本节课的情感基础。但是如何运用数学符号将自然语言的描述提升为形式化的定义,学生接受起来比较困难。在教学中要多引导,让学生真正的理解函数单调性的定义。 四、教学方法 启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。 探究教学法——引导学生去疑;鼓励学生去探; 激励学生去思,培养学生的创造性思维和批判精神。 合作学习——通过组织小组讨论达到探究、归纳的目的。 【教学手段】计算机、投影仪. 四、教学过程的设计 一、创设情境,引入课题(利用电脑展示) 如图为某市一天内的气温变化图: 问题:观察图形,能得到什么信息? 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 【设计意图】由生活情境引入新课,激发兴趣. 二、归纳探索,形成概念 1.借助图象,直观感知 学生对图像的认识由感性上升到理性,这是一个难点。如何突破难点?这里恰当地运用信息技术,使得这个抽象的问题变得非常形象直观。获得对函数单调性由“形”到“数”认识,让学生从“数”上体会函数的增、减变化情况。在这里我们没有直接给出对应的函数值表,而是用“几何画板”给学生一个清新的展示。 【设计意图】 从数学科学这个整体来看,数学的高度抽象性造就了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律,在需要和可能的情况下, 尽量做到从主观入手,从具体开始,逐步抽象。这里以学生们熟悉的函数为切入点,既做到了“直观、具体”,又很好把握了课堂教学需要把握教学内容的整体性和联系性的观点。 引导学生进行分类描述 (增函数、减函数).并引导学生用区间明确描述函数的单调性从而让学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 问题2:能不能根据自己的理解说说什么是增函数、减函数? 【设计意图】数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.刚升入高一的学生已经具备了一定的几何形象思维能力,但抽象思维能力不强.从日常的描述性语言概念升华到用数学符号语言精确刻画概念是本节课的难点. 2.探究规律,理性认识 问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?(电脑显示,学生分组讨论) 问题2:如何从解析式的角度说明在为增函数? 很多学生不能分清“无数”和“所有”的区别 3.抽象思维,形成概念 问题:你能用准确的数学符号语言表述出增函数的定义吗? (2)巩固概念(以下问题老师提问后,学生适当讨论后回答) 师:根据函数的单调性的定义思考:由f(x)是增(减)函数且f(x1)VVs红软基地

展开

同类推荐

热门PPT

相关PPT