调色板v3.0ppt

简介 相关

截图

调色板v3.0ppt

简介

这是调色板v3.0ppt,包括了Upon completion of this session, participants will be able to,Demand Management Processes等内容,欢迎点击下载。

调色板v3.0ppt是由红软PPT免费下载网推荐的一款课件PPT类型的PowerPoint.

Demand ManagementIeZ红软基地
Basics of Supply Chain ManagementIeZ红软基地
Learning ObjectivesIeZ红软基地
Upon completion of this session, participants will be able to:IeZ红软基地
Learning Objectives (cont.)IeZ红软基地
Basic Forecasting ConceptsIeZ红软基地
Describe three planning levels that are supported by demand forecastsIeZ红软基地
Explain four major principles of forecasting and three principles of data collection and preparationIeZ红软基地
Differentiate quantitative from qualitative forecasting techniquesIeZ红软基地
Estimate DemandIeZ红软基地
Calculate and explain the logic of an exponential smoothing forecastIeZ红软基地
Explain the logic behind the calculation of a seasonal forecastIeZ红软基地
Calculate and explain the use of the mean absolute deviationIeZ红软基地
Demand ManagementIeZ红软基地
Session 2IeZ红软基地
Demand Management ProcessesIeZ红软基地
Marketing Management and MixIeZ红软基地
Customer Relationship ManagementIeZ红软基地
Design assistance: helping in the design of new products or improvement of existing onesIeZ红软基地
Customer needs: assessing the customer’s business and creating (expanding) product offerings IeZ红软基地
Information and communications: collecting and analyzing customer data to support marketing, sales, and customer serviceIeZ红软基地
Order ManagementIeZ红软基地
Demand PlanningIeZ红软基地
Recognition承认 of customer requirements throughIeZ红软基地
ForecastsIeZ红软基地
Management of orders fromIeZ红软基地
Internal customersIeZ红软基地
External customersIeZ红软基地
Demand ManagementIeZ红软基地
Session 2IeZ红软基地
Independent vs. Dependent DemandIeZ红软基地
Only independent demand needs to be forecastedIeZ红软基地
Dependent demand should never be forecasted; it should be calculatedIeZ红软基地
Sources of DemandIeZ红软基地
ForecastsIeZ红软基地
Customer ordersIeZ红软基地
Replenishment补充 orders from DCsIeZ红软基地
Interplant transfersIeZ红软基地
OtherIeZ红软基地
Demand Patterns: TrendIeZ红软基地
Demand Patterns: Seasonal DemandIeZ红软基地
Demand Patterns: RandomIeZ红软基地
Stable vs. Dynamic DemandIeZ红软基地
Stable demand retains same general shape over timeIeZ红软基地
Dynamic demand tends to be erraticIeZ红软基地
Demand ManagementIeZ红软基地
IntroductionIeZ红软基地
Purposes and uses of the forecastIeZ红软基地
Principles of forecastingIeZ红软基地
Principles of data collection and preparationIeZ红软基地
How Forecasting Supports PlanningIeZ红软基地
Principles of ForecastingIeZ红软基地
ForecastsIeZ红软基地
Are rarely 100% accurate over timeIeZ红软基地
Should include an estimate of errorIeZ红软基地
Are more accurate for product groups and familiesIeZ红软基地
Are more accurate for nearer periods of timeIeZ红软基地
Data Collection and PreparationIeZ红软基地
Record data in terms needed for the forecastIeZ红软基地
Record circumstances relating to the dataIeZ红软基地
Record demand separately for different customer groupsIeZ红软基地
Data Collection and Preparation ExampleIeZ红软基地
Demand ManagementIeZ红软基地
Forecasting TechniquesIeZ红软基地
Qualitative TechniquesIeZ红软基地
Are based on intuition直觉 and informed opinionIeZ红软基地
Tend to be subjective主观IeZ红软基地
Are used for business planning and forecasting for new products IeZ红软基地
Are used for medium-term to long-term forecastingIeZ红软基地
Quantitative Techniques: ExtrinsicIeZ红软基地
Based on correlation相互关系 and causality因果关系IeZ红软基地
Rely on external indicatorsIeZ红软基地
Useful in forecasting total company demand or demand for families of productsIeZ红软基地
Two types of leading indicatorsIeZ红软基地
EconomicIeZ红软基地
DemographicIeZ红软基地
Quantitative Techniques: IntrinsicIeZ红软基地
Based on several assumptionsIeZ红软基地
The past helps you understand the futureIeZ红软基地
Time series are availableIeZ红软基地
The past pattern of demand predicts the future pattern of demandIeZ红软基地
ExamplesIeZ红软基地
Moving AveragesIeZ红软基地
Exponential Smoothing指数IeZ红软基地
Moving Averages: PrinciplesIeZ红软基地
Best used when demand is stable and there is little trend or seasonality, and demand variations are randomIeZ红软基地
When past demand shows random variation…IeZ红软基地
Do not second-guess what the effect of random variation will beIeZ红软基地
It is better to forecast based on average demandIeZ红软基地
Moving Average Forecast ExampleIeZ红软基地
Assume it is the end of December; forecast demand for the next month, JanuaryIeZ红软基地
Moving Average Forecast LogicIeZ红软基地
Class Problem 2.1IeZ红软基地
Class Problem 2.1 SolutionIeZ红软基地
Class Problem 2.1 Solution (cont.)IeZ红软基地
Three-Month Moving Average ForecastIeZ红软基地
Six-Month Moving Average ForecastIeZ红软基地
Moving Averages: Lessons LearnedIeZ红软基地
The moving average forecast will lag落后 the development of a rising or falling trendIeZ红软基地
The farther back the moving average forecast reaches for data, the greater the lagIeZ红软基地
The three-month moving average forecast may have overreacted if the demand surge猛增 had abated减弱IeZ红软基地
The moving average forecast works best when demand is stable with random variation; it will “filter out” random variation IeZ红软基地
Exponential指数 Smoothing LogicIeZ红软基地
Take the old forecast and the actual demand for the latest (most current) periodIeZ红软基地
Assign a weighting factor or smoothing constant  (α, alpha) to the latest period demand vs. the old forecastIeZ红软基地
Calculate the weighted average of the old forecast and the latest demand IeZ红软基地
Smoothing Constant (α, Alpha) IeZ红软基地
Low smoothing constant gives more weight to the old forecast: e.g., IeZ红软基地
  α  =  .2  for latest demand (e.g. period X)IeZ红软基地
  1 – α  =  .8  for old forecast (also period X)IeZ红软基地
Appropriate if demand is stable, not rising or fallingIeZ红软基地
Run simulations with different α values to see which one best fits the historical demand patternIeZ红软基地
Class Problem 2.2IeZ红软基地
A.  Prepare an exponential smoothing forecast for June.IeZ红软基地
May data: actual demand = 220; forecast = 200.IeZ红软基地
Calculate the forecast for June using a smoothing constant (α) of .20IeZ红软基地
B.  Prepare an exponential smoothing forecast for July.IeZ红软基地
June data: actual demand = 240IeZ红软基地
Calculate the forecast for July also using a smoothing constant (α) of .20IeZ红软基地
Class Problem 2.2 SolutionIeZ红软基地
A.  Prepare an exponential smoothing forecast for June.IeZ红软基地
=  (.2) 220  + (.8) 200  =IeZ红软基地
=        44    +        160     =     204IeZ红软基地
B.  Prepare an exponential smoothing forecast for July.IeZ红软基地
=  (.2) 240  + (.8) 204  =IeZ红软基地
=        48    +        163     =     211IeZ红软基地
Seasonal DemandIeZ红软基地
Seasonal Forecast ProcessIeZ红软基地
Seasonal Demand Indexes (Step 1)IeZ红软基地
Deseasonalized Forecast (Step 2)IeZ红软基地
Make the forecast for the next yearIeZ红软基地
Deseasonalize the forecast — distribute it evenly across the four quartersIeZ红软基地
Seasonal Forecast (Step 3)IeZ红软基地
Demand ManagementIeZ红软基地
Session 2IeZ红软基地
Tracking the ForecastIeZ红软基地
Forecasts are rarely 100% correct over time.IeZ红软基地
Why track the forecast?IeZ红软基地
To understand why demand differs from the forecastIeZ红软基地
To plan around error in the futureIeZ红软基地
To improve forecasting methodsIeZ红软基地
Bias vs. Random VariationIeZ红软基地
Forecast Error DataIeZ红软基地
Mean Absolute Deviation (MAD)IeZ红软基地
MAD Analysis: Normal DistributionIeZ红软基地
Uses of Forecast MeasurementIeZ红软基地
Identify changes and trends in demandIeZ红软基地
Identify and adjust for forecast error that results from random eventsIeZ红软基地
Adjust the period forecast so that it is close to the true forecast average demand to minimize biasIeZ红软基地
Making decisions on safety stock and service levels based on the degree of random variation (forecast error) IeZ红软基地
Supply Chain Management ImplicationsIeZ红软基地
Decrease reliance on long-term forecasts and increase ability to react quickly to demandIeZ红软基地
Collaborate with customers and suppliers, especially in sharing demand informationIeZ红软基地
Increase manufacturing flexibility internally and operations integration externally with customers and suppliersIeZ红软基地
Demand ManagementIeZ红软基地
Session 2IeZ红软基地
Learning ObjectivesIeZ红软基地
Upon completion of this session, participants will be able to:IeZ红软基地
Learning Objectives (cont.)IeZ红软基地
Basic Forecasting ConceptsIeZ红软基地
Describe three planning levels that are supported by demand forecastsIeZ红软基地
Explain four major principles of forecasting and three principles of data collection and preparationIeZ红软基地
Differentiate quantitative from qualitative forecasting techniquesIeZ红软基地
Estimate DemandIeZ红软基地
Calculate and explain the logic of an exponential smoothing forecastIeZ红软基地
Explain the logic behind the calculation of a seasonal forecastIeZ红软基地
Calculate and explain the use of the mean absolute deviationIeZ红软基地
Vocabulary CheckIeZ红软基地
Objective:IeZ红软基地
Reinforce terminology used in this sessionIeZ红软基地
Complete the activity in class, individually or in pairs, or as homeworkIeZ红软基地
Vocabulary CheckIeZ红软基地
Problem 2.4IeZ红软基地
Problem 2.4 (Solution)IeZ红软基地
Demand Management SummaryIeZ红软基地

展开

同类推荐

热门PPT

相关PPT