调色板v3.0ppt

简介 相关

截图

调色板v3.0ppt

简介

这是调色板v3.0ppt,包括了Upon completion of this session, participants will be able to,Demand Management Processes等内容,欢迎点击下载。

调色板v3.0ppt是由红软PPT免费下载网推荐的一款课件PPT类型的PowerPoint.

Demand ManagementjSr红软基地
Basics of Supply Chain ManagementjSr红软基地
Learning ObjectivesjSr红软基地
Upon completion of this session, participants will be able to:jSr红软基地
Learning Objectives (cont.)jSr红软基地
Basic Forecasting ConceptsjSr红软基地
Describe three planning levels that are supported by demand forecastsjSr红软基地
Explain four major principles of forecasting and three principles of data collection and preparationjSr红软基地
Differentiate quantitative from qualitative forecasting techniquesjSr红软基地
Estimate DemandjSr红软基地
Calculate and explain the logic of an exponential smoothing forecastjSr红软基地
Explain the logic behind the calculation of a seasonal forecastjSr红软基地
Calculate and explain the use of the mean absolute deviationjSr红软基地
Demand ManagementjSr红软基地
Session 2jSr红软基地
Demand Management ProcessesjSr红软基地
Marketing Management and MixjSr红软基地
Customer Relationship ManagementjSr红软基地
Design assistance: helping in the design of new products or improvement of existing onesjSr红软基地
Customer needs: assessing the customer’s business and creating (expanding) product offerings jSr红软基地
Information and communications: collecting and analyzing customer data to support marketing, sales, and customer servicejSr红软基地
Order ManagementjSr红软基地
Demand PlanningjSr红软基地
Recognition承认 of customer requirements throughjSr红软基地
ForecastsjSr红软基地
Management of orders fromjSr红软基地
Internal customersjSr红软基地
External customersjSr红软基地
Demand ManagementjSr红软基地
Session 2jSr红软基地
Independent vs. Dependent DemandjSr红软基地
Only independent demand needs to be forecastedjSr红软基地
Dependent demand should never be forecasted; it should be calculatedjSr红软基地
Sources of DemandjSr红软基地
ForecastsjSr红软基地
Customer ordersjSr红软基地
Replenishment补充 orders from DCsjSr红软基地
Interplant transfersjSr红软基地
OtherjSr红软基地
Demand Patterns: TrendjSr红软基地
Demand Patterns: Seasonal DemandjSr红软基地
Demand Patterns: RandomjSr红软基地
Stable vs. Dynamic DemandjSr红软基地
Stable demand retains same general shape over timejSr红软基地
Dynamic demand tends to be erraticjSr红软基地
Demand ManagementjSr红软基地
IntroductionjSr红软基地
Purposes and uses of the forecastjSr红软基地
Principles of forecastingjSr红软基地
Principles of data collection and preparationjSr红软基地
How Forecasting Supports PlanningjSr红软基地
Principles of ForecastingjSr红软基地
ForecastsjSr红软基地
Are rarely 100% accurate over timejSr红软基地
Should include an estimate of errorjSr红软基地
Are more accurate for product groups and familiesjSr红软基地
Are more accurate for nearer periods of timejSr红软基地
Data Collection and PreparationjSr红软基地
Record data in terms needed for the forecastjSr红软基地
Record circumstances relating to the datajSr红软基地
Record demand separately for different customer groupsjSr红软基地
Data Collection and Preparation ExamplejSr红软基地
Demand ManagementjSr红软基地
Forecasting TechniquesjSr红软基地
Qualitative TechniquesjSr红软基地
Are based on intuition直觉 and informed opinionjSr红软基地
Tend to be subjective主观jSr红软基地
Are used for business planning and forecasting for new products jSr红软基地
Are used for medium-term to long-term forecastingjSr红软基地
Quantitative Techniques: ExtrinsicjSr红软基地
Based on correlation相互关系 and causality因果关系jSr红软基地
Rely on external indicatorsjSr红软基地
Useful in forecasting total company demand or demand for families of productsjSr红软基地
Two types of leading indicatorsjSr红软基地
EconomicjSr红软基地
DemographicjSr红软基地
Quantitative Techniques: IntrinsicjSr红软基地
Based on several assumptionsjSr红软基地
The past helps you understand the futurejSr红软基地
Time series are availablejSr红软基地
The past pattern of demand predicts the future pattern of demandjSr红软基地
ExamplesjSr红软基地
Moving AveragesjSr红软基地
Exponential Smoothing指数jSr红软基地
Moving Averages: PrinciplesjSr红软基地
Best used when demand is stable and there is little trend or seasonality, and demand variations are randomjSr红软基地
When past demand shows random variation…jSr红软基地
Do not second-guess what the effect of random variation will bejSr红软基地
It is better to forecast based on average demandjSr红软基地
Moving Average Forecast ExamplejSr红软基地
Assume it is the end of December; forecast demand for the next month, JanuaryjSr红软基地
Moving Average Forecast LogicjSr红软基地
Class Problem 2.1jSr红软基地
Class Problem 2.1 SolutionjSr红软基地
Class Problem 2.1 Solution (cont.)jSr红软基地
Three-Month Moving Average ForecastjSr红软基地
Six-Month Moving Average ForecastjSr红软基地
Moving Averages: Lessons LearnedjSr红软基地
The moving average forecast will lag落后 the development of a rising or falling trendjSr红软基地
The farther back the moving average forecast reaches for data, the greater the lagjSr红软基地
The three-month moving average forecast may have overreacted if the demand surge猛增 had abated减弱jSr红软基地
The moving average forecast works best when demand is stable with random variation; it will “filter out” random variation jSr红软基地
Exponential指数 Smoothing LogicjSr红软基地
Take the old forecast and the actual demand for the latest (most current) periodjSr红软基地
Assign a weighting factor or smoothing constant  (α, alpha) to the latest period demand vs. the old forecastjSr红软基地
Calculate the weighted average of the old forecast and the latest demand jSr红软基地
Smoothing Constant (α, Alpha) jSr红软基地
Low smoothing constant gives more weight to the old forecast: e.g., jSr红软基地
  α  =  .2  for latest demand (e.g. period X)jSr红软基地
  1 – α  =  .8  for old forecast (also period X)jSr红软基地
Appropriate if demand is stable, not rising or fallingjSr红软基地
Run simulations with different α values to see which one best fits the historical demand patternjSr红软基地
Class Problem 2.2jSr红软基地
A.  Prepare an exponential smoothing forecast for June.jSr红软基地
May data: actual demand = 220; forecast = 200.jSr红软基地
Calculate the forecast for June using a smoothing constant (α) of .20jSr红软基地
B.  Prepare an exponential smoothing forecast for July.jSr红软基地
June data: actual demand = 240jSr红软基地
Calculate the forecast for July also using a smoothing constant (α) of .20jSr红软基地
Class Problem 2.2 SolutionjSr红软基地
A.  Prepare an exponential smoothing forecast for June.jSr红软基地
=  (.2) 220  + (.8) 200  =jSr红软基地
=        44    +        160     =     204jSr红软基地
B.  Prepare an exponential smoothing forecast for July.jSr红软基地
=  (.2) 240  + (.8) 204  =jSr红软基地
=        48    +        163     =     211jSr红软基地
Seasonal DemandjSr红软基地
Seasonal Forecast ProcessjSr红软基地
Seasonal Demand Indexes (Step 1)jSr红软基地
Deseasonalized Forecast (Step 2)jSr红软基地
Make the forecast for the next yearjSr红软基地
Deseasonalize the forecast — distribute it evenly across the four quartersjSr红软基地
Seasonal Forecast (Step 3)jSr红软基地
Demand ManagementjSr红软基地
Session 2jSr红软基地
Tracking the ForecastjSr红软基地
Forecasts are rarely 100% correct over time.jSr红软基地
Why track the forecast?jSr红软基地
To understand why demand differs from the forecastjSr红软基地
To plan around error in the futurejSr红软基地
To improve forecasting methodsjSr红软基地
Bias vs. Random VariationjSr红软基地
Forecast Error DatajSr红软基地
Mean Absolute Deviation (MAD)jSr红软基地
MAD Analysis: Normal DistributionjSr红软基地
Uses of Forecast MeasurementjSr红软基地
Identify changes and trends in demandjSr红软基地
Identify and adjust for forecast error that results from random eventsjSr红软基地
Adjust the period forecast so that it is close to the true forecast average demand to minimize biasjSr红软基地
Making decisions on safety stock and service levels based on the degree of random variation (forecast error) jSr红软基地
Supply Chain Management ImplicationsjSr红软基地
Decrease reliance on long-term forecasts and increase ability to react quickly to demandjSr红软基地
Collaborate with customers and suppliers, especially in sharing demand informationjSr红软基地
Increase manufacturing flexibility internally and operations integration externally with customers and suppliersjSr红软基地
Demand ManagementjSr红软基地
Session 2jSr红软基地
Learning ObjectivesjSr红软基地
Upon completion of this session, participants will be able to:jSr红软基地
Learning Objectives (cont.)jSr红软基地
Basic Forecasting ConceptsjSr红软基地
Describe three planning levels that are supported by demand forecastsjSr红软基地
Explain four major principles of forecasting and three principles of data collection and preparationjSr红软基地
Differentiate quantitative from qualitative forecasting techniquesjSr红软基地
Estimate DemandjSr红软基地
Calculate and explain the logic of an exponential smoothing forecastjSr红软基地
Explain the logic behind the calculation of a seasonal forecastjSr红软基地
Calculate and explain the use of the mean absolute deviationjSr红软基地
Vocabulary CheckjSr红软基地
Objective:jSr红软基地
Reinforce terminology used in this sessionjSr红软基地
Complete the activity in class, individually or in pairs, or as homeworkjSr红软基地
Vocabulary CheckjSr红软基地
Problem 2.4jSr红软基地
Problem 2.4 (Solution)jSr红软基地
Demand Management SummaryjSr红软基地

展开

同类推荐

热门PPT

相关PPT