45 MB/编程其他
该软件只适用于PC端安装使用,请前往PC页面下载
简介
这是opencv训练自己的人脸检测分类器样本下载,最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助。
opencv训练自己的人脸检测分类器样本是目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。
分类器中的"级联"是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。
分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。
目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。
"boosted" 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。
1、 样本的创建
2、 训练分类器
3、 利用训练好的分类器进行目标检测。
opencv训练自己的人脸检测分类器样本在opencv中有两个类型的分类器:opencv_haartraining和opencv_traincascade,后者是2.x版本中基于C++写的新版本的分类器。二者最主要的区别是opencv_traincascade支持Haar和LBP。LBP在训练和检测方面要比Haar特征快数倍。Haar和LBP的检测质量取决于要训练的数据和训练的参数设置。
opencv_traincascade与opencv_haartraining以不同的文件类型存储训练分类器。新的cascade检测接口支持者两种格式。opencv_traincascade可以保存(输出)旧格式的级联器,但是opencv_traincascade和opencv_haartraining不能在训练中断后加载另一种格式的分类器。
需要注意的是opencv_traincascade可使TBB用于多线程,而使用多核心的opencv一定是基于TBB。
展开